

Deep Learning

7.4 Variational Autoencoders (VAE)

Dr. Konda Reddy Mopuri kmopuri@iittp.ac.in Dept. of CSE, IIT Tirupati

Designed to reproduce input, especially reproduce the input from a learned encoding

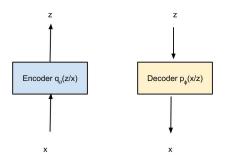
Designed to reproduce input, especially reproduce the input from a learned encoding

- Designed to reproduce input, especially reproduce the input from a learned encoding
- We attempted to project the data into the latent space and model it via a probability distribution

- Designed to reproduce input, especially reproduce the input from a learned encoding
- We attempted to project the data into the latent space and model it via a probability distribution
- ③ This wasn't satisfying

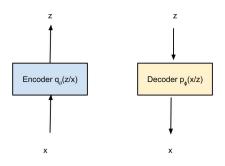
Variational Autoencoders

1 Key idea is to make both Encoder and Decoder stochastic



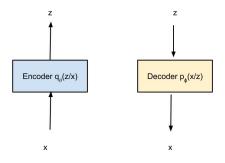
Variational Autoencoders

- Is Key idea is to make both Encoder and Decoder stochastic
- 2 Latent variable z is drawn from a probability distribution for the given input x



Variational Autoencoders

- (1) Key idea is to make both Encoder and Decoder stochastic
- 2 Latent variable z is drawn from a probability distribution for the given input x
- 3 Also, the reconstruction is chosen probabilistically from the sampled z



VAE Encoder

Takes input and returns the parameters of a probability density (e.g. Gaussian, mean and covariance matrix)

VAE Encoder

- Takes input and returns the parameters of a probability density (e.g. Gaussian, mean and covariance matrix)
- ² We can sample this to get random values of the latent variable z

VAE Encoder

- Takes input and returns the parameters of a probability density (e.g. Gaussian, mean and covariance matrix)
- 2 We can sample this to get random values of the latent variable z
- 3 NN implementation of the encoder gives (for every input x) a vector mean and a diagonal covariance

VAE Decoder

Decoder takes the latent vector z and returns the parameters for a distribution

VAE Decoder

- Decoder takes the latent vector z and returns the parameters for a distribution
- 2) $p_{\phi}(x/z)$ gives mean and variance for each pixel in the output

VAE Decoder

- Decoder takes the latent vector z and returns the parameters for a distribution
- 2) $p_{\phi}(x/z)$ gives mean and variance for each pixel in the output
- ③ Reconstruction of x is via sampling

(1) Loss for AE: l_2 distance between the input and its reconstruction

- (1) Loss for AE: l_2 distance between the input and its reconstruction
- In case of VAE: we need to learn parameters of two probability distributions

- (1) Loss for AE: l_2 distance between the input and its reconstruction
- In case of VAE: we need to learn parameters of two probability distributions
- 3 For each input x_i we maximize expected value of returning x_i (or, minimize the NLL)

 $-\mathbb{E}_{z \sim q_{\theta}(z/x_i)}[\log p_{\phi}(x_i/z)]$

 $-\mathbb{E}_{z \sim q_{\theta}(z/x_i)}[\log p_{\phi}(x_i/z)]$

 $\textcircled{1} \quad \texttt{Problem: Input images may be memorized in the latent space} \rightarrow \\ \texttt{similar inputs may get different representations in z space}$

 $-\mathbb{E}_{z \sim q_{\theta}(z/x_i)}[\log p_{\phi}(x_i/z)]$

- 0 Problem: Input images may be memorized in the latent space \rightarrow similar inputs may get different representations in z space
- We prefer continuous latent representations to give meaningful parameterization (e.g. smooth transition between digits)

 $-\mathbb{E}_{z \sim q_{\theta}(z/x_i)}[\log p_{\phi}(x_i/z)]$

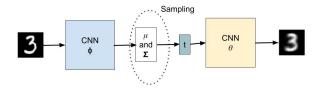
- 1 Problem: Input images may be memorized in the latent space \rightarrow similar inputs may get different representations in z space
- We prefer continuous latent representations to give meaningful parameterization (e.g. smooth transition between digits)
- 3 Solution: Force $q_{\theta}(z/x_i)$ to be close to a standard distribution (e.g. Gaussian)

$l_i(\theta,\phi) = -\mathbb{E}_{z \sim q_{\theta}(z/x_i)}[\log p_{\phi}(x_i/z)] + \mathbb{KL}(q_{\theta}(z/x_i)||p(z))$

First term promotes recovery, sencond term keeps encoding continuous (beats memorization)

$$l_i(\theta, \phi) = -\mathbb{E}_{z \sim q_{\theta}(z/x_i)}[\log p_{\phi}(x_i/z)] + \mathbb{KL}(q_{\theta}(z/x_i)||p(z))$$

1) Problem: Differentiating over θ and ϕ



$$l_i(\theta, \phi) = -\mathbb{E}_{z \sim q_\theta(z/x_i)}[\log p_\phi(x_i/z)] + \mathbb{KL}(q_\theta(z/x_i)||p(z))$$

0 Reparameterization: Draw samples from $N(0,1) \rightarrow$ doesn't depend on parameters

